PHOTOADDITION OF NON-CISOID 1,2-DIKETONES $(\underline{1})$ AND PHENYLGLYOXAL $(\underline{1})$ TO ALKYLTHIOACETYLENES (2); PREPARATION OF 3-ALKYLTHIOFURANS (5)

By Aart Mosterd, Hendrik J. Matser and Hendrik J.T. Bos
(Laboratory of Organic Chemistry, Rijksuniversiteit,

Croesestraat 79, Utrecht, The Netherlands)
(Received in UK 15 October 1974; accepted for publication 17 October 1974)

Photoaddition of phenanthraquinone to alkoxyacetylenes affords 1,4-adducts: dihydrodioxins or dioxoles 1. The non-cisoid 1,2-dioxo compounds give with alkenes 1,2-cycloaddition 2 under formation of α -keto-oxetanes. Irradiation of the non-cisoid 1,2-dioxo compounds benzil, biacetyl, 1-phenylpropan-1,2-dione and phenylglyoxal (1: R^1 = R^2 = C_6H_5 , R^1 = R^2 =Me, R^1 = C_6H_5 R^2 =CH3, and R^1 = C_6H_5 R^2 =H respectively) with 1-alkylthio-1-propynes (2: R^3 =Me, Et, t-Bu, and C_6H_5) in benzene through G.W.V.glass 3 gives rise to cis and trans 2-alkylthio-2-buten-1,4-diones (4) in yields up to 45%. These adducts (4) are undoubtedly formed, via an oxete derivative (3), through 1,2-cycloaddition of one oxo group of (1) to the triple bond. Cf.

These adducts are useful starting materials for the preparation of 3-alkyl-thiosubstituted furans. It is possible to convert in good yield 2-alkylthio-2-buten-1,4-diones with $SnCl_2$, acetic acid and some hydrochloric acid in tri- and tetrasubstituted furans (5). Cf.⁶.

The 2-alkylthio-2-buten-1,4-diones and the furans were isolated by chromatography and identified by $^{\rm l}$ H-NMR, IR, UV and MS. The mass spectra of the furans

showed amongst others important peaks at m/e = P(arent), P minus R^1CO and P minus CH_3CO ; for $R^3 = t - C_4H_9$, P minus C_4H_8 is very strong.

R ¹	R ²	R ³	Yield (<u>4</u>) (%)	Yield (<u>5</u>) (%)	MS $(\underline{5})$; strongest peaks (m/e)
Ph	Ph	t-Bu	45	90*	322, 266, 105, 43
Ph	н	Me	20	90	204, 189, 105, 43
Ph	н	Et	20	80	218, 189, 105, 43
Ph	н	t-Bu	25	90	246, 190, 105, 43
Ph	Н	Ph	25	95	266, 189, 105, 43
Me	Me	t−Bu	20	95	198, 142
Ph	Me	t-Bu	**	85	260, 204, 105, 43
Me	Ph	t-Bu}	10**	85	260, 204, 43

Compounds (4) and (5) prepared

Typical Experimental Procedure:

A solution of 2 g of phenylglyoxal ($\underline{1}$: R^1 =Ph, R^2 =H) and 2 g of 1-tert-butyl-thio-1-propyne ($\underline{2}$: R^3 =t-Bu) was irradiated (Philips HPK-125W) in 500 ml of benzene under nitrogen, using G.W.V.glass³ (transmission <1% at 360 nm) as a filter. After 2 h the solvent was evaporated and the residue was submitted to dry column chromatography (SiO_2 /benzene). Yield 25% of ($\underline{4}$: R^1 =C₆H₅, R^2 =H, R^3 =t-Bu); R^1 H-NMR in CCl_4 : R^1 : R^1 : R^1 : R^2 : R^2 : R^2 : R^3 :

References

- 1. H.J.T. Bos, H. Polman and P.F.E. van Montfort, J.C.S. Chem. Comm. 1974, 188.
- H.S. Ryang, K. Shima and H. Sakurai, J. Org. Chem. <u>38</u>, 2860 (1973); cf. references cited therein; cf. R.J.C. Koster, D.G. Streefkerk, Mrs. J. Oudshoorn-van Veen and H.J.T. Bos. Recl. trav. Chim. <u>93</u>, 157 (1974).
- A. Schönberg, G.O. Schenck and O.A. Neumüller, Preparative Organic Chemistry, Springer Verlag, Berlin, 1968, p.490.
- 4. H.J.T. Bos and J.S.M. Boleij, Recl. trav. Chim. 88, 465 (1969).
- 5. H. Polman, A. Mosterd and H.J.T. Bos, Recl. trav. Chim. 92, 845 (1973).
- 6. R.E. Lutz and C.E. McGinn, J. Am. Chem. Soc. 64, 2585 (1942).
- U.E. Matter, C. Pascual, E. Pretsch, A. Pross, W. Simon and S. Sternhell, Tetrahedron <u>25</u>, 691 (1969).

^{*} In this case only one isomer of (4) could so far be cyclized. ** Both compounds are formed from 1-phenyl-propan-1,2-dione.